A Platform for the Development
of Parallel Applicationsusing Java

Erick Pinacho Rodriguez, Darnes Vilarifio Ayala

Benemérita Universidad Auténoma de Puebla, Facultad de Ciencias de la Computacion
epinacho@gmail.com, darnes@cs.buap.mx

Abstract. The search for solutions for real problems generally involves alot of
calculations. This brings itself a great amount of time consumed when
generating a response. The only solution for this problem is offered by
Paralelism. By now, the hardware is not a trouble anymore. It has become
more important the development of software tools that take advantage of the
hardware possibilities.
One of the most widely used function library for developing paralel
applications is Message Passing Interface (MPI) [1, 2]. This library has limits
about memory handling, so the developer must handle complex synchronization
mechanisms for using shared memory.
Java language offers upgrades about concurrency mechanisms and technologies
for developing distributed applications [3, 4]. Then it is a good language to
create a platform to develop paralel applications. Even today, there are no
major efforts in the development of utilities to create parallel software on this
language.

Our developed Platform is oriented for clusters or Local Area Networks (LAN).
The design applied has considered slaves and a master process, which is in
charge of controlling the tasks executed by each of the slaves. Both the master
and slave processes have their own architecture. The master architecture is
composed by three layers, while the dlave architecture is composed by five
layers.

For the communication between master and slaves inside the platform, a
multicast User Datagram Protocol socket (UDP) is used. The communication is
transparent to developer, who disposes of functions to send and receive

messages to develop his applications.
This Platform offers a shared memory. This one is paged, so the amount of
memory used is not a problem.

Remote Method Invocation (RMI), has permitted to distribute the classes
between all of the nodes. This aspect is controlled by the master process, in
order to guarantee an adequate work balance.

Keywords: Parallel Computing, Distributed Computing.

1 Introduction

The performance of the computers has increased exponentially from 1945 until now,
on an average factor of 10 every 5 years [5]. The performance of a computer is

A. Gelbukh, S. Suarez, H. Calvo (Eds.) Received 01/07/07
Advances in Computer Science and Engineering Accepted 19/10/07
Research in Computing Science 29, 2007, pp. 202-210 Final version 24/10/07

A Plataform for the Development of Parallel Applications using Java 203

directly dependant to the time required to perform a basic operation, and the number
of basic operations that can be performed concurrently. It is not about faster
processors at all to improve the computer performance.

Two important features are time and space, it means the number of steps that an
algorithm requires -in the worst case scenario- to generate a result, and the memory
required to solve the current problem [6].

The calculations over a network of computers -also known as “distributed
computing”- are not only a subfield of the parallel computing. Distributed computing
is deeply related with troubles such as reliability, security and heterogeneity that are
considered as____in the parallel computing research.

A distributed system is where all of the computers that belong to the network must
work as one. Once one of the computers that form part of the system fails, even when
the user does not know which computers form this 'system’, an application running
may not be performed correctly [5].

The concurrency theory has been an active research field on the computer sciences,
since the results presented by Carl Adam about the Petri Webs in 1960 [7]. Since
then, a wide variery of theoretical and logical models and tools have been developed
to understand the concurrent systems.

The clusters are gaining a wide area of the current applications, due to they offer
acceptable performance levelsfor arelative low cost.

Regarding the software, there are a wide variety of tools that help to the
programmer to develop distributed and/or parallel tools. Some of these tools are
currently being standarized, while some others are gaining certain acceptance from
the developer community.

A great part of the dedicated effort on the development of paralel or distributed
applications is put over (a) the handling of structures or communication channels
offered by the current tools; (b) the management of the platform resources; and (c) the
control of events of the system, amongst others.

Particularly, and regarding the Java Language, those efforts to develop parallel or
distributed tools are minimal. Some of these tools are on a mature stage, and the
others are still under development.

Thanks to the creation of the Forum "Java Grande", the interest and effort has been
focused on the standarization and development of more tools over the Java L anguage.

Nevertheless, already disposing of these tools, there are missing higher abstraction
levels that ease the programming task to the developer.

More tools and applications are required; these tools must help to the devel oper to
focus their efforts into solving the initial problem. These tools must also help to
decrease the time dedicated to solve communication details, event control and
management Or resources.

The platform presented in this paper is executed over a cluster of computers with
Linux as OS. The migrative nature of java alows to use any OS with the minimal
adequations needed.

This platform is directed to the development of Java parallel applications that
require the use of shared or distributed memory, with transparency to the user. In the
paralel applications, the use of shared memory becomes an important problem.
Another important advantage offered by this platform is the message passing, because
the programmer can forget completely about the protocols for this matter.

204 Erick Pinacho Rodriguez, Darnes Vilarifio Ayala

The platform supports and manages the following tasks:

1. Support to the mpiJavaimplementation. The MPI libraries are not originally
designed to support concurrence. The platform makes the programmer free of the
concurrent handling of the MPI libraries.

2. Shared memory. The developer can use shared memory. The platformisin charge
of maintaining the memory consistent and of the automatic delivery and
refreshment of the data.

3. Support for asingle model of pool threads for each of the execution nodes,
considering also mechanisms that guarantee the good use and performance of the
model.

4. Support for the delivery of packages -not related to the MPI- in a transparent
manner to the user.

5. Support for the execution of N parallel tasks using M nodes of a cluster.

6. Management tasks for the nodes that form the network of the platform.

The paper is organized as follows: Section 2 describes the considerations made to the
design and construction of the platform. Section 3 shows the architecture of the
platform, particularly the master and slave daemons, and how they comunicate.
Section 4 presents the implementation of the platform, the programmed structure of
the messages sent on it, how to handle memory block and how to synchronize them.
Section 5 shows the conclusions obtained during the development of this research
project.

2 Design Considerations

The platform is executed over a network interconnected by a TCP/IP protocol. Each
node has its own IP address on the same address range, in other words they form the
same subnetwork. On execution time, the platform is formed by an instance of a class
named MasterDaemon, and one or more instances of a class named SlaveDaemon.

When the MasterDaemon is uploaded, it opens a multicast socket, which is an
UDP socket with the ability of joining to socket groups which are also multicast. In
this kind of socket, when any of the participants sends a package, all the group -
including the emitter- receives the same package. This is important and is done over
again many times in the platform, specially on Shared Memory mode.

Once the remaining daemons are uploading, they will be joining to the multicast
group.

It has been mentioned that more than one instance of the SlaveDaemon class can
be uploaded inside the same node. For the platform effects, each of these instances
will become a logical node added to the platform. When a daemon is uploaded, a
whole instance of the Java virtual machine is created. When a second daemon is
uploaded, the JVM is not completely created again, but a fraction of it. For each
daemon subsequently uploaded, there will be a partial copy of the VM. These actions
consume mainly memory resources.

A Plataform for the Development of Parallel Applications using Java 205

3 Architecture of the Platform

The planning and modeling phases for the platform has brought sustantiable benefits.
Thefirst oneisthe possibility of changes in the implementation of the services for the
sublayers without affecting the superior layers or other services. The latter benefit is
that new services can be added in any layer, enriching it and extending its capabilities.

/ VM \ / sla\}JynMode \

master node
Users Tasks
PlatformBind
Class Dispatcher 4 } Tasks Management
Mode Management 4 } Mede Management
RMI e 4 Pouwoe | ru | P
\.

\
J L 0L

TCP/IP NETWORK

Fig. 1. Architecture of the daemons.

Master Daemon. The stack has 3 service layers.
1. Communication Channel Layer
2. Node Management Layer
3. Classes Dispatcher Layer

In the first layer the services that the master daemon uses to communicate with all
the components of the platform are located. This layer is subdivided in two parts,
UDP and RMI. The UDP part provides the service of message delivery and an easy
structure to send them; both services are widely used in the entire platform. The RMI
part offers the service of distributing the classes which are exposed thorough a remote
interface.

The Node Management layer registers al the daemon processes that are uploaded
in the platform. Also it makes polls on the nodes to know if they are available.

The Class Dispatcher layer makes the User Class Definition to balance the load. It
uses the information of nodes to indicate to each node which classes to obtain and
execute.

Slave Daemon. This stack has 5 service layers:
1. Communication Channel Layer

2. Node Management Layer

3. Tasks Management Layer

4. Patform Bind

206 Erick Pinacho Rodriguez, Darnes Vilarifio Ayala

5. Tasksof the user

Thefirst layer is similar to the one in the Master Daemon; however this layer adds
MPI services. The RMI part provides some facilities to obtain the master daemon
classes. The MPI pat has the MPI functions properly codified, solving the
concurrency problems found in the normal library.

The Node Management layer creates the name of the node, also can request the
name of each node.

The Tasks Management layer, as its name refers, treats the tasks received from the
Master Daemon. This daemon indicates to each slave daemon which class obtains by
assigning an ID for each task.

The PlatformBind acts as an interface for the Platform and the classes of the user.
The layer provides communication services among tasks using messages with an UDP
socket, passing messages with MPI, management of threads and the service of
memory sharing.

The last layer performs the tasks of the user. Though the tasks are managed on the
layer 3, in this layer they are executed. The distinction of layer 3 and 5 is about the
services that each layer offers, such as putting the tasks in a pool. This brings up the
extensibility concept.

4 Implementation

The implementation of the platform has been made in layers through the codification
of the diverse classes. Next, the most important considerations for the development of
each layer are presented.

L3

Modelnformation | [ciassnetinion | [pyTimer ‘| __{ L |

| I—

| T
. 1 . T
« ainterface » > — - y
ElassShish RISy 1 Usertlass

Figure 2. Class Diagram of the platform

Naming of the nodes. When a daemon is uploaded in a host, the daemon notifies to
the platform that a new node has been created. A node is the instance of the
SlaveDaemon class. For a user, the name of a node is not relevant, because the user
does not need to know in which node its classes will be executed. However for the
message passing, it is necessary to know the location of both sender and receiver. For
this reason each node has a unique name in the platform. First the slave daemon takes
its name directly from the node itself; if the name is localhost, the daemon renames
the node on the application level. The name assigned will be NODE_XYZ, where

A Plataform for the Development of Parallel Applications using Java 207

XYZ is arandom number. If the selected name is in use, the Master Daemon notifies
it and the dave tries to obtain a new name.

Message structure. A unigue communication point is used by all of the
functionalities of the platform, such as the memory, the platform management and the
user messages. It is necessary that the message has a structure that allows recognizing
the origin, destiny and purpose of the message. In the platform, the messages are
represented by the class Message.

s
12| 4| s |e | 7| s

)
1. 0] Source Node

2. [307 Destination Mode

. [100] Scurce Task

. [104] Destination Task

. [108] Flattorm Tag

. [109] Message

. [113] Message Length

. [1171 Buffer

[R S ¥ S S

Figure 3. Message structure

If the field of the message Platform Tag indicates that the message comes from a
user, the field Message may be used as desired. If the message comes from the
platform, the field Message may have one of the following values:

1. DROP NET. This message indicates to al of the nodes of the platform to end the
application.

2. ADD NODE. This message indicates that a hode has registered in the platform
network.

3. LIST NODES. This message is generated by the Master Daemon to advise to each
node the list of available and registered nodes in the platform.

4. PING. This message is generated by the Master Daemon to poll to the nodes if
they are still active.

5. PONG. This message is generated by a Slave Daemon in response to a PING
message.

6. IP MASTER. This message is generated by the Master Daemon to inform the IP
address of the master node to the slave nodes.

7. FETCH CLASS. It is a message to inform to the Slave Daemons the class that
must be obtained to be next executed.

8. CLASS DEFINITION. This message is generated by the user to inform to the

Master Daemon about the definition of the classes that will be used.

9. RENAME NODE. This message is generated once a node changes its name.
10.MEMORY MESSAGE. This message contains the changes made to the shared
memory that should be informed to all of the nodes of the network.

208 Erick Pinacho Rodriguez, Darnes Vilarifio Ayala

11.BLOCKER MESSAGE. This message contains the addresses of the shared
memory that have been blocked.

12. RELEASE MESSAGE. This message contains the address of the shared memory
that have been liberated.

13. BARRIER MESSAGE. This message indicates that a node has been synchronized.

14. CLEAR BARRIER. This message indicates that the nodes have been liberated to
continue their execution.

Communication sockets. To perform the communication through the platform, a
UDP Multicast socket is employed. The use of these sockets brings simplicity and
quickness to the protocol, which are not present in TCP, not even a Multicast
implementation. Were TCP sockets employed instead of UDP in a network of N
nodes, each node must create N-1 sockets to have communication with each of the
remaining nodes of the platform. This justifies the use of UDP Multicast.

The Class-D IP addresses, which are between 224.0.0.0 and 239.255.255.255, are
employed on multicast. Any application may use one of these addresses, and this
assignment does not affect the address assigned by any network interface. With a
correct address and a standard port UDP, the node can receive and transmit multicast
messages.

Any delivery made in multicast will be received by any node which uses this
socket.

Shared memory. The platform offers architecture with shared memory. Then, it is
possible to offer to the developer a memory area common for al of the nodes of the
platform, which is updated by replies. Each node possesses a full replica of the shared
memory. This memory is designed to make pagination to the disc through small
pages. The developer then disposes of a memory limited theoretically by the size of
his hard drive. The data banks have an original size -configurable by the user- of 4096
bytes.

All of the instances of the user class that are found on the same node receive the
same instance of shared memory. It is said that the shared memory offers concurrency
in two levels, node and platform level.

The access to the shared memory is made through put*() and get*() methods,
which alow to read and write primitive types of values to the memory -such as byte,
int, float, double and byte arrays. All the addresses of the shared memory contain a
byte, so the user shall be responsible of the movements needed to store primitive
values which require more than one byte. The platform offers constants with the size
of each of the primitive types. Similarly to the implementation of a hardware shared
memory, the platform offers to block specific addresses. This functionality can be
used as a basic synchronization mechanism. However several considerations about
latency must be reviewed, because once a block is made, it will take some time before
itisnotified to al of the nodes of the platform.

Update and replicate. Once a process or task updates the shared memory of its node
-by writing with the method put* ()- this update must be notified to the other instances
of the shared memory, so they know the new updated values.

A Plataform for the Development of Parallel Applications using Java 209

The natification of these updates requires a great amount of messages that should
be sent into the network. This provokes traffic in the network, resource consumption
and extra time dedicated on attending each message.

To overcome this situation, the updates are made with delays. This is due to the
writing process is regularly accompanied by another similar processes, rarely the
writing isisolated. The late updates are controlled by atemporizer -with atime period
configurable by the user. When a user updates the shared memory, the temporizer
initiates a time counting. Once the count ends, all of the updates made on the memory
are collected and then sent to all of the nodes of the platform. This mechanism
reduces the network traffic and the consumption of resources. However, the execution
time will be delayed and aso the solution to the application of the user. This can be
handled by modifying the temporizer time; when the time is reduced, the waiting time
will be reduced, but the traffic will increase. It is decision of the user which factor to
affect.

Address block. The shared memory allows the memory address block. Each time that
an address is blocked, the block is registered with the ID of the task that made the
block. From this moment, only this task may access to this address, to read or even
write on it. Any other process which wants to read or write this address will be
blocked until the address is liberated by the blocker task. The memory blocks are
communicated through the whole platform with a message described previoudly.
Unlike the messages that update content, the messages that indicate blocks are sent
immediately when a task blocks an address, including also all of the messages
prepared to be sent to the nodes -it means, this message acts as a trigger for the
temporizer defined previously. With this, it is assured that the content is updated
before making the block or unblock.

Regularly, the tasks will use the memory blocks as a manner to assure the
concurrency, and as a manner to keep synchronization between them. This is why the
block notifies or liberation of memory addresses is performed immediately, not
delayed as the content update and replication.

Platform Synchronization. The synchronization points are common on the software
tools that perform paralel or distributed tasks. A synchronization point consists into
make all of the different processes to reach a point where they will expect the other
processes to reach it. When all of the nodes reach the synchronization point, their
execution will continue.

In the design of this platform, the synchronization points have been included to be
programmed, and they are known as Barriers. These Barriers occur in two stages. the
first stage synchronizes the node itself, because a node may be performing more than
one task of the used; so the node will be synchronized once al of its performed tasks
get the same defined point. The second stage synchronizes the entire platform, which
will wait for all the nodes to reach the same defined point, once the first stage is
reached for every node. The master node will be responsible of receiving all the
notifications of each synchronized node. Once the notifications for each node are
received, the master node will send the liberation message to al the nodes, and their
execution will continue.

210 Erick Pinacho Rodriguez, Darnes Vilarifio Ayala

To achieve the synchronization, two classes of the concurrency tools offered by
java have been employed: they are the CyclicBarrier and the CountDownLatch.

5 Conclusions

With the main objective of solving optimization problems on high scale by using
paralel agorithms, a new platform has been developed. This platform is directed to
take advantage of the cluster architecture.

One of the most popular tools in the scientific area is MPI. It is used to develop
solutions by using a mechanism of message passing. However, a more natura model
can be applied for some problems by using the concept of shared memory, which is
not included in MPI. This problem has been completely solved with this platform.

This construction with shared memory has been developed by using concurrency
mechanisms offered by the Java Language.

The facilities offered by the language for the creation of thread pools allows their
management and reduces the traffic that implied the creation an destruction of
threads. It has aso support for the creation and application of policies about the
execution of threads.

The utilities for concurrency of Java include an asynchronous queue. With this, it
is not necessary to create critic zones or semaphores for the addition or substraction of
elements, because a concurrency control is included in the same class. Asynchronous
queues were employed in the platform for the message pass.

Some parts of the platform, especialy in the shared memory area, include the
semaphores concept of Java.

The disposal of this platform will allow to the students of the Faculty of Computer
Sciences at the Benemérita Universidad Auténoma de Puebla, the development of
concurrent, distributed and parallel applications through a unique programming
language which requires only the classes and characteristics offered by the platform.

Acknowledgments. The heading should be treated as a 3" level heading and should
not be assigned a number.

References

=

Graham E. Faggs .Perfomance analysis of MPI collective operations. Cluster Computing.
ISSN : 13867857. pag. 127-143. Kluwer Academic Publisher.

LAM/MPI Team at Open Systems Lab. LAM/MPI Users Guide. 2007.

David. D. 4 Review: Java Packages and Classloaders. 2001.

Goetz. B. Concurrent Collection Classes in Java. IBM Home Page. 2003

lan Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995.

Paul E. Black, Algorithms and Theory of Computation. Appearing in the Dictionary of
Computer Science, Engineering and Technology. 2000. CRC. PressLLC.

7. Filman, Robert E, Daniel P. Friedman, Coordinated Computing: Tools and Techniques for
Distributed Software. McGraw Hill Higher Education. (1984)

ok wWN

